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1 Introduction

In this project, we will examine the voter model and its relation to other models in the
course, as well as seeing an application to a fake hypothetical election problem. We compare
various parameterizations of our initial conditions in the model, as well as how investigating
how the voter model behaves over time, and discuss the implications of the behaviors we
study.

Broadly speaking, the models we studied in class can be broken up into three main
categories: those that have no spatial interaction, those with some sort of “implicit” spatial
interaction, and those with explicit structure. The first is the easiest case, and include the
branching process and birth/death processes. A level up in sophistication is the implicit
spatial dependence. The spatial dependence here simply means that “space matters”, i.e.
the locations of units (individuals) are considered but there are no constraints as to where
in the state space units in the model are allowed to travel. These models were studied in
chapters 11 and 12, and include the logistic growth process, the Wright-Fisher model, and
the Moran model, described in detail in Lanchier [2017] and first introduced in Verhulst
[1845],Wright [1942], and [Moran, 1958] respectively.

While the implicit spatial structure is a step up from the no-space models, and is easier
to study analytically, the model is not too enticing when applied to a “real-world problem”.
Take, for example, the spread of a virus such as the covid pandemic. Were one to model the
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number of infected with the logistic growth process, for example, they may run into issues
with the assumption that all pairs of locations are equally likely to interact. To be explicit,
to consider modeling the entire United States with a spatially implicit model such as that

seems unwisel.

Naturally, we might want to consider a model with an explicit spatial structure. One
such model is the voter model. first introduced independently by Clifford and Sudbury
[1973] and Holley and Liggett [1975]. The voter model, in simplest terms, is modeled by a
d—dimensional integer lattice occupied by an individual of type 0 or type 1. Independently of
one another, the individuals update their opinion at a generation of the model by mimicking
one of their nearest neighbors (within 2d), where the neighbor within this distance of the
individual of interest is chosen uniformly at random.

An interacting particle system is a continuous time Markov chain with state at time ¢
defined by the function:
&:2%—1{0,1,...,x -1} (1)

That is elements in the d—lattice, sites? in our model, are mapped to different types. The
interaction neighborhood is given by N, and the transition rates are given by co_1(x,¢)
and c1-¢(x,¢), described in equations 2 and 3 below:
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The following algorithm is used to simulate the voter model. The algorithm is relatively
easy to implement in a number of languages; we choose python for ease of visualization.
Chapter 16 of Lanchier [2017] provides a graph theoretic approach to study properties of

Algorithm 1 How to simulate the Voter model

1: procedure VOTER(N,T) > The size of our grid and # of generations
2: Create an N x N lattice(grid)

3: T =min{T1(x,y): (x,y) € E} ~ Exp(N?) > Time of first update
4: First potential update is at vertex uniformly chosen X ~ uniform{1,2,...,N }2

5: initialize grid with different types > Set probability of each type per site
6: while t < T do

7: Choose one of the 4 neighbors of vertex X uniformly at random from the grid

8: return the type at site

IThis example is meant to be illustrative; we do not plan to model the covid pandemic in this write-up.
2yertex is the term we use when approaching the problem from a graph-theoretic approach.
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the voter model, exploiting the duality relationship between the voter model and random
walks. The voter model has been applied extensively to a wide suite of problems, with
several interesting recent applications. Gastner and Ishida [2019] used the voter model to
study how opinions spread between social networks, while Gastner et al. [2018] studies a
variant of the voter model to study concealed voter opinions. Bhat and Redner [2020] used
the voter model as a basis to study the influence on contrasting news sources on political
polarization

2 The problem at hand

Although relatively simple, the voter model has been used to tackle many interesting prob-
lems. Her is the problem we think would be interesting to solve. Say we have an upcoming
election to declare the next head librarian in the fictional country of Tredfylton. We are
deployed to work for the campaign of candidate A, who we call “A”, with an opponent named
“B”. Upon entry, we are dealt with the issue of two differing opinions within the campaign.
Some in the model seem to think a national TV blitz is the game. If a voter in Arizona sees
a voter in New Hampshire? voting for A, then they may make up their mind to vote for A.
The other camp in the campaign thinks this approach is nonsensical. Voters in certain areas
will only vote for A if those around them are, or if the campaign directly sends surrogates
to directly interact with these voters. In a sense, they are hedging their bets on a polarized
electorate and want to take advantages of clusters and know how rigid they are. We tend
to buy the argument of the latter group more and will explore their claims in some detail in
the next section.

2.1 Wright Fisher model

2.2 The voter model

First things first, we present the results of simulating the voter model for 4 different real-
izations at 4 different time iterations. We assume a vote for A is a win, and a vote for the
opponent, a loss. These are coded as going to vote for A as a 1 (blue in our map), otherwise
0 (white in the maps).

Note, we are reporting realizations of the voter model. Our point is to show the general
idea of more clustering as T increases, but the difference in clusters and final results vary
dramatically from realization to realization. For a more thorough analysis, a robust monte
carlo simulation should be performed to give a better idea of how the system evolves over

3This hypothetical country has the same state structure and nomenclature as the United States.
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a course of different simulations. While we do report Monte Carlo results for “low” T situa-
tions, the computational burden of doing so for more interesting situations* is too great for
this exercise.

Figure 1 shows different realizations of our model for 3 different initial types of configu-
rations. All of them at higher T show significant clustering of similar overall ratios, despite
the very different places they all started out as. For the polarized scenarios, it shows that
while polarization remains steady at “low” T (even though 7' =1 still includes about 10,000
iterations), the polarized regions will eventually shift and the clustering will be more ran-
domly distributed across the grid.

Figure 2 shows the difference in outcome for win/loss (i.e. preferring our candidate our
the opponent for the head librarian position) for the low polarization and high polarization
model over time. This time, we have the outcome for every realization in the run, but each
time point only gives 2 numbers (technically 1 since win+loss=N?) to summarize the thought
patterns. While we lose some information in these plots, they still remain informative in
showing how the system evolves over time. Specifically, we see how there is little change
in the high polarization for quite a while, which when combined with our knowledge of
the initial conditions, is unsurprising as we expect little change since so many people are
surrounded by like-minded people in this configuration.

We also introduce a method for quantifying clustering/polarization. We calculate the
% of neighbors a unit has the same opinion as, and do so for all units in the grid. Albeit
crude, it is somewhat informative. Figure 3 shows histograms of the % of neighbors (the 8
touching units on the grid) that share the same opinion as a unit. The histogram represents
the frequency of each % across the N x N = 10000 units on the grid at the specific time
realization. Notice, in the low polarization state, we start with the low polarization but end
at T =500 with nearly half of units having every single neighbor have the same unit. In the
heavy polarization initial state, we start heavily polarized, but end at about the same place
as the low-polarization state, and if we were running the models longer we conjecture they’d
both converge to the same percentage of all neighbors thinking the same.

4For example we could look at regional variations over different runs for example
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Figure 1: Realizations at different snapshots in time. 7' = n does not indicate n runs, because the
time is exponentially distributed. Rather T = 1, for example, translates to about 10000 iterations.
Top is low polarization, mid level is medium polarization, where certain parts of the initial map that
that are pre-disposed to vote a certain way. We assume in region 30-50, the opponent has a 90%
chance of being favored, whereas from 80-90, there is an 80% chance. The regions are outlined by
red. The final row is the high polarization, where voters in certain regions are predisposed to vote
one way or another. At 7' = 2000 the 3 models clustering patterns all appear randomly distributed,
regardless of initial configuration, see figure 4 in appendix.
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Figure 2: We compare the totals across iterations. The top plots are zoomed in. Notice the scale of
the y-axis on the heavy polarization state in the zoomed in plot. There is very little movement during
the first 20000 iterations.
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Figure 3: The top row is a histogram of the probability a unit has the same opinion as their neighbor
for the low polarization initial set up, at two different realizations of 7. The bottom is the same plot
but for the high-polarization initial state.
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2.3 Monte Carlo Simulations

Here we look at repeating the process at a fixed grid-size and the number of generations
pre-determined as well.

Initial T Mean Var mean % all Var % all
polarization P(win) P(Win) neighbors think neighbors
same
Low 10 0.502 0.0004 21.2 0.016
Low 100 0.44 0.001 30.0 0.8
Medium 10 0.484 0.0015 30.4 0.56
Medium 100 0.478 0.0018 33.7 0.78
Heavy 10 0.483 0.0016 79.6 0.40
Heavy 100 0.487 0.0013 63.3 0.64

Table 1: Monte Carlo Simulation: 100 repetitions without any common seed. Repeat the N =
100, T = 10 model.

3 Conclusions

For the campaign that employed us, we would likely report back that our model seems to
converge towards a polarized electorate, though the rate of that convergence is highly de-
pendent on initial configurations, and predicting where polarization occurs is also a random
process. The takeaway is then probably to have a very firm understanding of the initial
conditions of the problem.

As for the investigation of polarization, we simply explored one configuration of heavy
polarization. In this setting, the spatial configuration of the initial conditions is likely very
important. For example, if all the A voters were on the top half of the grid and all the others
were on the bottom half of the grid, the results would likely vary dramatically for different
realizations of the model.

A better metric to quantify clustering ® would also be another step to look at. Due to
computational concerns, calculating an index at every iteration with our current methodol-
ogy would be cumbersome. We’d have to perform the method at every point in the N x N grid
for every of the likely millions of iterations. Our current implementation is in python using
the just in time compiler from NUMBA, which helps speed up the process. However, the
process is still a burden computationally. Further, due to memory concerns, keeping track of
clustering of every site at every iteration is not feasible, and thus choosing a subset of sites,
or a single index to summarize the entire grid is necessary.

5in our example, clustering corresponds to polarization.

7



APM 541 Final Project Demetrios Papakostas

As a mathematician/statistician, one could argue that it is not our place to debate which
campaign assumption is correct. Rather, perhaps it is appropriate to model both these sce-
narios under various underlying parameter conditions and report back to camp with our
findings. To do so, it could be interesting to also deploy the Moran model and study some
properties of it. However, the model feels unrealistic for the problem, which is why it’s
omitted from this project.
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A Appendix

Figure 4 looks at realizations at ¢ = 2000 for three different initial configurations. The take-

away is the clustering seems to no longer have the initial patterns in the medium and heavy
polarization set-ups.

T=2000, N=100 T=2000, N=100 T=2000, N=100

Figure 4: At T = 2000, with the model going through many iterations, the clustering appears ran-
dom and it is hard to tell which initial grid we started from.

We also introduce a “prophet” right at the center of our grid at the onset of the model.
The prophet cannot change their mind, and everyone who’s come into contact with the
prophet not only changes their opinion to align with voting for the prophet, but they no
longer are allowed to change their mind. In the sense, the prophet is an “invasive” species,
and this wrinkle in the model mirrors the contact process. Figure 5 shows a plot of the

voting alignment of the units in the grid over time. Eventually the prophet will take all the
votes.

Count vs iteration, T=150, N=100, Low Polarization
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Figure 5: Involving the “Prophet”, who’s views are unchangeable and whose followers are also un-
changeable after their interaction.
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