
Deep Learning for Causal Inference
A Comparison of Architectures for Heterogeneous Treatment Effect

Estimation

Andrew Herren
Demetrios Papakostas

P. Richard Hahn
Francisco Castillo

Abstract

Causal inference has gained much popularity in recent years, with interests ranging from
academic, to industrial, to educational, and all in between. Concurrently, the study and usage of
neural networks has also grown profoundly (albeit at a far faster rate). What we aim to do in this
blog write-up is demonstrate a Neural Network causal inference architecture. We develop a fully
connected neural network implementation of the popular Bayesian Causal Forest algorithm, a
state of the art tree based method for estimating heterogeneous treatment effects. We compare
our implementation to existing neural network causal inference methodologies, showing improve-
ments in performance in simulation settings. We apply our method to a dataset examining the
effect of stress on sleep. A code repository to the run the causal neural network is available on
github.

1 Introduction

A common problem in causal inference is to infer the effect of a binary treatment, Z, on a scalar-
valued outcome Y . When the effect of Z on Y is posited to be constant for all subjects, or homo-
geneous, the estimand of interest (average treatment effect) is a scalar-valued parameter, which
admits a number of common estimators. When the assumption of treatment effect homogeneity is
unwarranted, estimates of the average treatment effect (ATE) may be of questionable utility. The
challenge of estimating a heterogeneous conditional average treatment effect (CATE), is evident in
the fact that the estimand is no longer a scalar-valued parameter but a function of a (potentially
high dimensional) covariate vector X . In recent years, researchers have proposed to use machine
learning methods for nonparametric CATE estimation (Hahn et al. [2020]; Krantsevich et al. [2021],
Hill [2011]; Wager and Athey [2018]; Farrell et al. [2020]). Additional methods that have been intro-
duced include TARNET Shalit et al. [2017] and Dragonnet Shi et al. [2019]. The main focus of this

1



Deep Causal Learning BCF-NNet

document will be comparing Farrell et al. [2020] and the method we introduce, as they are the most
similar in nature.

This paper focuses specifically on CATE estimators that rely on deep neural networks. While
neural networks are universal function approximators (Cybenko [1989]), nature does not typically
provide treatment effects for use as “training data," and estimation proceeds by defining networks
that can infer the CATE from available data. The architecture of a deep neural network, which
refers to a specific composition of weights, data, and activation functions, plays a crucial role in this
process, along with regularization and training techniques. This paper compares empirical CATE
estimates of several architectures. The first two methods represent outcomes as a sum of the CATE,
β(X ), and the prognostic effect α(X ), which occurs regardless of treatment status. In the Farrell et al.
[2020] architecture, both α(X ) and β(X ) emerge from a shared set of hidden layers. Essentially, this
architecture learns a common set of basis functions for α(X ) and β(X ) and then estimates separate
coefficients for each those basis functions. We refer to this approach as “the Farrell method" or simply
“Farrell" for the remainder of the paper. The second method an extension of Bayesian Causal Forests
(BCF) (Hahn et al. [2020]). This method, which we hereafter refer to as “BCF-nnet" or “nnet BCF,"
uses completely separate neural networks for α(X ) and β(X ). Finally, we consider a “naive" approach
that partitions the data into treatment and control groups, and learns a separate function on each
subset of the data. These functions can be used to estimate the CATE by subtracting predictions of
the “treatment function” from those of the “control function."

Simulation studies show that nnet BCF outperforms both the Farrell and naive methods when
treatment effects are small relative to prognostic effects.

2 Problem Description

In order to make the problem precise, we begin by introducing notation and defining our estimators.
We will use the following conventions in our notation:

Bold upper case letters (i.e. X) refer to random matrices

Bold lower case letters (i.e. x) refer to instantiations of random matrices

Regular upper case letters (X , Y , Z) refer to random variables / vector

Regular lower case letters (x, y, z) refer to instantiations of random variables

Math calligraphy letters (X , Y , Z ) refer to the support of a random variable

For example, if X ∼ f (X ), we could write E
(
X

)= ∫
X xf (x)dx.

Causal inference is concerned with the effect of a treatment, which we denote as Z, on an out-
come Y . In general, both the treatment and outcome can be continuous, categorical, or binary. For
the purposes of this paper, we restrict our attention to the case of a binary treatment (Z = {

0,1
}
) and

a continuous outcome (Y =R).

2



Deep Causal Learning BCF-NNet

Our overview of the causal inference assumptions largely follows that of Hernán and Robins
[2020]. We are interested in inferring the effect of a treatment, or intervention, on an outcome
when nothing is changed except the treatment being administered. In experimental settings, this
causal interpretation is often provided by the study design (randomized controlled trial, randomized
block design, etc...). In many real-world scenarios, designing and conducting an experiment would
be impossible, unethical, or highly impractical. In such cases, investigators are limited to using
observational data (i.e. data that were not collected from a designed experiment).

To formalize the idea described above, we let Y 1 and Y 0 denote two counterfactual random
variables, where Y i indexes the random outcomes for cases in which Z has been set equal to i. The
counterfactual nature of these random variables is important to underscore before we define assump-
tions and estimators. These two random variables are often referred to as potential outcomes (see for
example Hernán and Robins [2020]). The variables are random because even in the counterfactual
scenario in which only treatment i has been administered, Y may potentially be influenced by other
factors.

We can define the average treatment effect (ATE) as β = E
(
Y 1 −Y 0

)
= E

(
Y 1

)
−E

(
Y 0

)
. In many

classical statistical problems, inferring the difference of two random variables is as straightforward
as assessing the difference in the empirical means of samples of both random variables. However, the
counterfactual nature of Y 1 and Y 0 is such that for any observation, only one of the two variables can
be observed (subjects cannot receive both the treatment and control). We define the observable ran-
dom variable Y = ZY 1+(1−Z)Y 0. In order to use a dataset of independent and identically distributed
(iid) samples of Z and Y to estimate the ATE, we must make several identifying assumptions.

1. Exchangeability: Y 1,Y 0 ⊥ Z

2. Positivity: 0< P(Z = 1)< 1

3. Stable Unit Treatment Value Assumption (SUTVA): Y 1
i ,Y 0

i ⊥Y 1
j ,Y 0

j for all j 6= i

With these assumptions, we can use observed data to estimate the average treatment effect. One
common estimator is the “inverse propensity weighted" (IPW) estimator, whose expectation is shown

3



Deep Causal Learning BCF-NNet

below to be the ATE under the three assumptions of exchangeability, positivity, and SUTVA.

Y Z
p(Z = 1)

− Y (1−Z)
1− p(Z = 1)

=
(
Y 1Z+Y 0(1−Z)

)
Z

p(Z = 1)
−

(
Y 1Z+Y 0(1−Z)

)
(1−Z)

1− p(Z = 1)

= Y 1Z2 +Y 0(1−Z)Z
p(Z = 1)

− Y 1Z(1−Z)+Y 0(1−Z)2

1− p(Z = 1)

= Y 1Z
p(Z = 1)

− Y 0(1−Z)
1− p(Z = 1)

E

(
Y Z

p(Z = 1)
− Y (1−Z)

1− p(Z = 1)

)
= E

(
Y Z

p(Z = 1)

)
−E

(
Y (1−Z)

1− p(Z = 1)

)

= E
(

Y 1Z
p(Z = 1)

)
−E

(
Y 0(1−Z)

1− p(Z = 1)

)

= E
(
Y 1

)
E

(
Z

p(Z = 1)

)
−E

(
Y 0

)
E

(
1−Z

1− p(Z = 1)

)

= E
(
Y 1

) p(Z = 1)
p(Z = 1)

−E
(
Y 0

) 1− p(Z = 1)
1− p(Z = 1)

= E
(
Y 1

)
−E

(
Y 0

)
In practice, P(Z = 1) is often estimated from the data, but as long as E

(
p̂(Z = 1)

) = p(Z = 1), the
estimator will still be unbiased.

IPW is just one of many estimators of the average treatment effect. We refer the interested
reader to Hernán and Robins [2020] for more detail. We now introduce the random variable X to
denote a vector of covariates of the outcome (often referred to as “features" in machine learning).
These covariates might include demographic variables, health markers measured before treatment
administration, survey variables measuring attitudes or preferences, and so on.

Consider a simple motivating example, in which X is age, Z is a blood pressure medication, and
Y is blood pressure. Older patients are more likely to have high blood pressure, so we would expect
that X and Y are not independent. Older patients, who visit the doctor more frequently, are also
potentially more likely to be prescribed blood pressure medicine. In this case, we would not expect
Y 1,Y 0 ⊥ Z. Older patients are more likely to receive blood pressure medicine and also more likely to
have high blood pressure so that observing Z = 1 changes the distribution of Y 1 and Y 0.

We can work around this limitation with a modified assumption, conditional exchangeability:
Y 1,Y 0 ⊥ Z | X . In words, this states that, after we control for the effect of X on treatment assignment,
the data satisfy exchangeability. Similarly, we no longer have that P(Z = 1) is the same for all
subjects, so we modify the positivity assumption to hold that 0 < P(Z = 1 | X ) < 1. Under this set of
assumptions, we define a new IPW estimator as Y Z

p(Z=1|X ) − Y (1−Z)
1−p(Z=1|X ) and can show that its expected

value is the ATE.

4



Deep Causal Learning BCF-NNet

2.1 Conditional Average Treatment Effect (CATE)

With the notation in place, we proceed to the focus of this paper: estimating heterogeneous treatment
effects using deep learning. In the prior section, we introduced the average treatment effect as
an expected difference in potential outcomes across the entire support set of covariates. Average
treatment effects have a long history in the causal inference literature because they are (relatively)
straightforward to estimate and provide useful, intuitive information about the average benefits (or
harms) of an intervention.

Sometimes, however, the ATE masks a considerable degree of heterogeneity in the causal effects
of an intervention. Consider the everyday example of caffeine tolerance. Some people find that any
level of caffeine consumption at any time of day carries too many unpleasant effects, while others
drink espresso after a large dinner. While it may be possible to measure an average treatment effect
of a given dose of caffeine, the estimate collapses a range of individual treatment effects and may
thus not provide much clinical or practical insight.

We define the Conditional Average Treatment Effect (CATE) as E
(
Y 1 −Y 0 | X = x

)
. Intuitively,

this defines a treatment effect for the conditional distribution of Y 1 and Y 0 in which X = x. Note
that with this modification we define not a single parameter β but a function X −→ β(X ). If X is
binary or categorical, this can be done empirically by partitioning the data into subsets {x : x = s} and
then estimating the ATE on the subsets. But in general, with continuous X or simply a large number
of categorical X variables, this approach becomes impossible and β(X ) must be estimated by fitting
a model.

A tempting and convenient first step in CATE estimation would be use a linear model for β(X ).
More recently, advances in computer speed and a growing recognition of the complexity of many
causal processes has spurred interest in nonparametric estimators of β(X ). To name a few examples,
Hahn et al. [2020] and Hill [2011] use Bayesian tree ensembles, Wager and Athey [2018] use random
forests, and Farrell et al. [2020] use deep learning. The focus of this paper will be to compare the
method introduced in Farrell et al. [2020] to a novel architecture inspired by Hahn et al. [2020] and
a naive partition-based architecture.

2.2 Estimating CATE using Deep Learning

We adapt the notation of Farrell et al. [2020] slightly to fit the conventions used above. As in prior
sections, our goal here is to estimate a causal effect of a binary treatment Z, on a continuous outcome
Y . Since we are interested in the effect’s heterogeneity, we must construct a model that will estimate
E
(
Y 1 −Y 0|X = x

)
for any x. Before discussing the specific architecture, we introduce some more

clarifying terminology and notation. This construction of treatment effect heterogeneity follows that
of Hahn et al. [2020]. Consider the following model

Y =α(
X

)+β(
X

)
Z+ε

ε∼N
(
0,σε

)
Z ∼Bernoulli

(
π(X )

)

5



Deep Causal Learning BCF-NNet

In this case, β
(
X

)
corresponds to the treatment effect function, which given the assumptions in the

prior section, can be written as E
(
Y | X , Z = 1

)−E(
Y | X , Z = 0

)
. α(X ) corresponds to E

(
Y | X , Z = 0

)
which we refer to as the prognostic function, ε is random noise, and π(X )=P(

Z = 1|X )
which we refer

to as the propensity function.

Right now, X refers to a (potentially large) vector of covariates that may be useful in estimating
heterogeneous treatment effects. But using the above notation, we can partition X into several
categories:

1. Prognostic features impact Y through α(X )

2. Effect-modifying features impact the outcome Y through β(X )

3. Propensity features impact the outcome Y through π(X )

For example if π(X ) = sin
(
X1

)+ ∣∣X3
∣∣, we would say that X1 and X3 are propensity variables but X2,

for example, is not. These categories are of course not mutually exclusive, but can be made so by
considering their combinations. We avoid the complete factorial expansion of these three categories
and instead define several combinations that are of particular interest in methodological problems.

1. Pure prognostic variables are variables which only appear in the function α(X )

2. Pure modifiers are variables which only appear in the function β(X )

3. Pure propensity variables are variables which only appear in the function π(X )

4. Confounders are variables which appear in both π(X ) and α(X )

Before we proceed, we also introduce the concept of targeted selection, when π(X ) = f (α(X )).
Intuitively, this corresponds to a practice of assigning treatment to those who are most likely to need
it (because, for example, α(X )= E(

Y |X , Z = 0
)

would be high otherwise). This is an extreme version of
confounding, in which the entire prognostic function is an input to the propensity function and thus
to the assignment of treatment. As is discussed in depth in Hahn et al. [2020], this phenomenon is
both highly plausible in real-world settings and also vexing to many approaches to CATE estimation.

The architecture of the model is discussed in depth in later sections, so here we simply note the
high-level differences between the Farrell method and nnet-BCF. Farrell et al. [2020] propose to fit
a model E

(
Y

) = α
(
X

)+β(
X

)
Z using a neural network with two hidden layers to which map to two

separate output nodes: α
(
X

)
and β

(
X

)
. Hahn et al. [2020] fit a similar model using Bayesian Ad-

ditive Regression Trees (BART) (Chipman et al. [2010]), with one key distinction. α
(
X

)
and β

(
X

)
Z

are fit as completely separate models with no information shared during training. This is different
from the Farrell et al. [2020] approach as their method shares weights between the α(X ) and β(X )
functions via the first two hidden layers. BCF nnet follows the approach of Hahn et al. [2020] by
training two completely separate neural networks for α(X ) and β(X ). Finally, the “naive" method
estimates E

(
Y | X , Z = 1

)
with one network and E

(
Y | X , Z = 0

)
with another network so that β(X )

can be estimated as a difference between these networks’ predictions.

6



Deep Causal Learning BCF-NNet

3 Methods

In this section, we discuss in more detail how the CATE is estimated in each of the three deep
learning methods proposed, as well as a linear model comparison.

3.1 Joint Training Architecture (Farrell/Shared Network)

In Farrell et al. [2020], the authors posit that

E
(
Y | X = x, Z = z

)=G
(
α(x)+β(x)z

)
(1)

where G(u),u ∈R is a known link function specified by the researcher, and α(·) and β(·) are unknown
functions to be estimated. Since we are interested in effects of Z on a real-valued Y , we use an
identity link function so that G() can be removed from the equations and we have E

(
Y | X = x, Z = z

)=
α(x)+β(x)z. The authors propose estimating α(·) and β(·) with one deep fully connected neural
network. We implement this architecture as a fully connected neural network with two hidden
layers and a two-node parameter layer which outputs α(X ) and β(X ). The output of this architecture
is then a linear combination of the two nodes in the parameters layer, α(x)+β(x)z (see Figure 1).

Figure 1: The Farrell method with a 3-dimensional vector of covariates X , 4 nodes in each hidden layer (in
practice, these layers are usually much deeper). G is an activation function that takes α(X )+β(X )Z as an
argument.

Since Y is real-valued, we use mean squared error (MSE) as a loss function in training each of
the methods introduced in this section.

3.2 BCF nnet

Based on the results and discussion in Hahn et al. [2020], we hypothesize that splitting α(·) and
β(·) into separate networks with no shared weights may yield better CATE estimates on some data
generating processes (DGPs). The BCF nnet method specifies

E
(
Y | X = x, Z = z

)=α(
x, π̂(x)

)+β(x)z (2)

7



Deep Causal Learning BCF-NNet

In Hahn et al. [2020], α and β are given independent BART priors (Chipman et al. [2010]). π̂(xi) is an
estimate of the propensity function We implement the BCF nnet architecture as in Figure 2. While

Figure 2: The BCF nnet architecture, where G(·) is an activation function that takes α(X )+β(X )Z as an
argument.

the shared-weights versus separate weights distinction between Farrell and BCF nnet has been
made clear, a subtle difference between the architectures is that BCF nnet allows for an estimate of
the propensity function to be incorporated as a feature in the α(X ) network. Since targeted selection
implies α(X ) is a function of π(X ), this parameterization was observed to be helpful in Hahn et al.
[2020].

In Farrell et al. [2020], the authors develop confidence intervals for their architecture’s estimates
(relying on influence functions, a common tool for calculating standard errors in non-parametrics).
We incorporated these intervals into our architecture, but found that they were far too tight and ex-
hibited poor coverage in the low n settings we were studying. We therefore do not report or comment
further.

3.3 Separate Network Regression Approach

The “naive” method in our comparison employs two completely separate regression models,

Y1(X )= E(
Y | Z = 1, X

)
and Y0(X )= E(

Y | Z = 0, X
)

(3)

With these two regression functions, our estimate of β(X ) is simply β(X )=Y1(X )−Y0(X ). Each Yi(X )
is constructed as a 2-layer fully connected neural network, with the number of parameters chosen to
be similar to the number chosen for the Farrell and the BCF architecture.

8



Deep Causal Learning BCF-NNet

3.4 Linear Model

We also compare our two neural network architectures to a simple linear model’s estimate of β

Y =βZ+ Xδ+ε (4)

where β is the coefficient of interest and represents the average treatment effect. The model is fit
using ordinary least squares (OLS). We allow for interaction effects between X and Z.

4 Simulation Summary

Equation 5 is the first DGP we run. We choose a complex function for α and strong targeted selection,
and a simpler function for β (which allows for heterogeneous effects) to illustrate the effect of targeted
selection.

X1, X2, X3 ∼ N(0,1)

X4 ∼ binomial(n = 2, p = 0.5)

X5 ∼Bern(p = 0.5)

X = (
X1, X2, X3, X4, X5

)
β
(
X

)=
0.20+0.5∗ X1 · X4 small treatment to prognosis

5+0.5∗ X1 · X4 large treatment to prognosis

α
(
X

)= 0.5cos
(
2X1

)+0.95∗ ∣∣X3 · X5
∣∣−0.2∗ X2 +1.5

π(X )= 0.70∗Φ
(
α(X )

s(α(X ))
−3.5

)
+u/10+0.10

u ∼ uniform(0,1)

Y =α(X )+β(X )Z+σε
ε∼ N(0,1)

σ= sd(α(X )) ·κ
Z ∼Bern(p =π(X ))

(5)

We choose the total number of parameters in the Shared architecture to be about the same as the
separate network (α + β networks). In the Shared network, this means we have 100 hidden nodes in
layer 1, and 26 in layer 2, meaning 3,280 total parameters.

In the BCF Nnet architecure, we have 60 parameters in the α first layer, 32 hidden nodes in
the second layer. For the β network, we have 30 and 20 hidden nodes respectively. This yields 3,226
total parameters. For both methods, we use a learning rate of 0.001 with an Adam Optimizer, we use
Sigmoid activation, binary cross entropy loss for the propensity, MSE for the other networks, ReLu
activation (double check), 250 epochs, and a batch size of 64. The dropout rate is 0.25 in every layer.
The propensity score for the BCF NNet architecture is estimated using a 2 layer fully connected
neural network with 100 and 25 hidden nodes respectively, and the rest of the parameters the same
as above. In the separate network approach, we build the architecture separately using a 2-layer

9



Deep Causal Learning BCF-NNet

fully constructed neural network (for both Y1 and Y0, as described in Equation 3) infrastructure with
50 hidden nodes in layer 1 and 26 in layer 2 for both models. This is a total of 3,306 parameters. The
other hyperparameters are the same as the BCF NNet and Shared Network approach.

Table 1 shows results using both the Shared Network approach Farrell et al. [2020] and the BCF
Nnet approach we present. This table indicates some RIC which biases the Farrell approach. The
method we propose also has additional flexibility in that the propensity estimate can be estimated
with any method and passed in, it need not be a MLP approach. Additionally, because we separate
the networks, like in the original BCF paper Hahn et al. [2020], we can add additional regularization
on the β network1.

Table 2 shows results with a large treatment to prognosis ratio. In this setting, even with RIC
presumably still being relevant due to the strong targeted selection in Equation 5 (see right panel of
Figure 3), the large treatment effect dominating allows for the extra parameters of the shared net-
work approach to out-perform the separate network approach. However, as the sample size increases,
the gap disappears, leading us to believe with sufficient sample size, this difference in methods would
be minimal.

Figure 3: Left panel: Histogram of β. On the right is a plot of α vs π, indicative of strong targeted selection.
For this particular realization of Equation 5, with n = 10,000, the mean of β(X )= 0.20, the mean of α(X )= 1.95,
and the range of π(X )= (

0.11,0.90
)
, with mean of 0.37.

1In the world of neural networks, this could entail changing dropout rates, implementing early stopping, or weight-
decay, amongst other approaches. In general, an advantage of Neural Networks, particularly when using a well developed
and maintained service like pyTorch is the ease in customizing one’s model for one’s needs.

10



Deep Causal Learning BCF-NNet

Method n mean β̂ True ATE True Mean α Mean Runtime Mean Correlation Mean rMSE mean (magnitude) Bias

Shared Network 250 0.47 0.20 1.95 45.38 0.74 0.50 0.26
BCF NNet 250 0.34 0.20 1.95 82.15 0.77 0.44 0.15

Separate Networks 250 0.40 0.20 1.95 33.00 0.69 0.57 0.19
OLS Approach 250 2.04 0.20 1.95 0.00 0.16 2.00 1.83

Shared Network 500 0.38 0.20 1.95 47.85 0.80 0.42 0.18
BCF NNet 500 0.28 0.20 1.95 87.10 0.83 0.37 0.10

Separate Networks 500 0.38 0.20 1.95 34.52 0.75 0.49 0.18
OLS Approach 500 2.04 0.20 1.95 0.00 0.21 2.00 1.84

Shared Network 1000 0.31 0.20 1.94 52.37 0.84 0.36 0.11
BCF NNet 1000 0.26 0.20 1.94 96.41 0.89 0.30 0.06

Separate Networks 1000 0.35 0.20 1.94 37.56 0.83 0.40 0.15
OLS Approach 1000 2.01 0.20 1.94 0.00 0.17 1.97 1.81

Table 1: Simulation results with small treatment to prognostic ratio. We run the DGP from Equation 5 with
κ = 1.0 across 100 independent trials (varying ε) for each size n. We generate X for each size n, but keep
the X matrix the same for each of the 100 independent trials for each sample size (i.e. the X vary across the
sample sizes, but are constant at each iteration per sample size). We train on the n size, but test on a size of
10,000, to ensure we are looking at population parameters. See Figure 4 if a visual presentation of this table
is preferable.

Method n mean β̂ True ATE True Mean α Mean Runtime Mean Correlation Mean rMSE mean (magnitude) Bias

Shared Network 250 4.89 5.00 1.94 46.00 0.60 0.62 0.14
BCF NNet 250 4.50 5.00 1.94 83.35 0.65 0.75 0.50

Separate Networks 250 4.85 5.00 1.94 33.49 0.49 0.87 0.19
OLS Approach 250 3.73 5.00 1.94 0.00 0.04 3.03 1.27

Shared Network 500 4.95 4.99 1.95 48.20 0.66 0.51 0.09
BCF NNet 500 4.66 4.99 1.95 88.01 0.74 0.54 0.34

Separate Networks 500 5.01 4.99 1.95 34.90 0.49 0.72 0.10
OLS Approach 500 3.76 4.99 1.95 0.00 0.05 3.01 1.24

Shared Network 1000 4.96 5.00 1.95 52.77 0.76 0.44 0.07
BCF NNet 1000 4.82 5.00 1.95 97.46 0.87 0.36 0.18

Separate Networks 1000 5.01 5.00 1.95 38.09 0.72 0.49 0.08
OLS Approach 1000 3.75 5.00 1.95 0.00 0.05 3.01 1.25

Table 2: Simulation results with large treatment to prognostic ratio. We run the DGP from Equation 5 with
κ = 1.0 across 100 independent trials (varying ε) for each size n. We generate X for each size n, but keep
the X matrix the same for each of the 100 independent trials for each sample size (i.e. the X vary across the
sample sizes, but are constant at each iteration per sample size). We train on the n size, but test on a size of
10,000, to ensure we are looking at population parameters. The benefits of the BCF NNet approach are lost,
we hypothesize this is because any RIC introduced is offset by the large treatment, and since the treatment
function compromises a good portion of the observed outcome, the extra parameters in the shared network
should outperform the BCF NNet approach.

11



Deep Causal Learning BCF-NNet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

400 600 800 1000
Train Size

B
ia

s

BCF NNet Separate Network Shared Network

Bias (Magnitude)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

400 600 800 1000
Train Size

rM
S

E

BCF NNet Separate Network Shared Network

rMSE

Figure 4: Left panel: Bias of dgp with different n. Right: RMSE. This is in the “small” β world.

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
BCF nnet

S
ha

re
d 

N
et

w
or

k

Bias Magnitude at n=250

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4
BCF nnet

S
ha

re
d 

N
et

w
or

k

Bias Magnitude at n=500

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3
BCF nnet

S
ha

re
d 

N
et

w
or

k

Bias Magnitude at n=1000

0.4

0.5

0.6

0.3 0.4 0.5
BCF nnet

S
ha

re
d 

N
et

w
or

k

rMSE at n=250

0.3

0.4

0.5

0.3 0.4 0.5
BCF nnet

S
ha

re
d 

N
et

w
or

k

rMSE at n=500

0.25

0.30

0.35

0.40

0.45

0.25 0.30 0.35 0.40
BCF nnet

S
ha

re
d 

N
et

w
or

k

rMSE at n=1000

Figure 5: Comparing Individual biases and rmse’s across the 100 Monte Carlo runs for the shared and BCF
architectures.

12



Deep Causal Learning BCF-NNet

5 Data Example

Onyper et al. [2012] is the data we look at as a demonstration of the methods. The dataset we
are interested in has 253 observations with 1 treatment variable, 1 outcome variable, and 11 vari-
ables defining our feature space X . Specifically, the data is collected on participating undergraduate
students at a liberal arts college in the northeastern United States. Our outcome is [Poor Sleep

Quality], which is a range of integers from 1-18, with 1 being the worst sleep quality and 18 be-
ing the best (the metric of interest is called the “Pittsburgh Sleep Quality Index”), We standardize
the data using the ‘scale’ command in R. The “treatment” we investigate is [Stress Level], where
students respond with “high” or “normal”. High stress level is considered the “treatment”, and pre-
sumably should lead to lower sleep quality. However, this problem is a very clear causal inference
problem, as illustrated in Figure 6. It is not unreasonable to expect there variables that could poten-
tially lead to higher stress also lead to worse sleep quality, and in particular those described below.
While this feature set likely does not fully meet the strong ignorability assumption, we still muster
on with the example. The more worrying assumption violation is the SUTVA violation.

Z

U

Y

Figure 6: The classic graph.

1. Gender: Male/Female

2. Class Year: Fresh, Soph, Jr, Sr.

3. Early Class: Whether or not the student signed up for a class starting before 9AM

4. GPA: College GPA, scale 0-4

5. Classes Missed: Number of classes missed in semester

6. Anxiety Score: Measure of degree of anxiety

7. Depression Score: Measure of degree of anxiety

8. Happiness Score: Measure of degree of happiness

9. Number Drinks: Number of alcoholic drinks per week

10. All Nighter: Binary indicator for whether student had all-nighter that semester

11. Average Sleep: Average hours of sleep for all days

In our analysis, we change one hyper-parameter from our simulation study. For the propen-
sity estimation, we only run 100 epochs instead of 250 epochs. In the simulation, we found that
more epochs led to better predictive performance, but in the applied data problem, the propensity
estimate clustered to estimates of 0 and 1 for the probability. As a benchmark, we compared our

13



Deep Causal Learning BCF-NNet

0.0 0.2 0.4 0.6 0.8 1.0
4

2

0

2

4

6

8

10

Prognosis vs Propensity

Separate Networks Architecture

Data Source: https://rdrr.io/cran/Lock5withR/man/SleepStudy.html#google_vignette

ClassesMissed < 4

GenderMale = 1

Happiness >= 26 ClassYearJunior = 0

Happiness >= 27

0.26
100%

−0.18
79%

−1.1
30%

−1.6
20%

−0.12
11%

0.37
48%

0.033
38%

−0.41
23%

0.73
15%

1.6
11%

1.9
21%

yes no

Figure 7: Left: A plot of α(X ) vs π(X ), potentially indicative of targeted selection. Of course, in this example
the selection is not targeted, but one could convince themselves people may be more stressed out if they start
thinking about sleep problems. Right: A tree analysis, in the likes of Woody et al. [2020]. We fit a tree to
treatment effects and analyze the effects of moderating variables.

fully connected 2-layer neural network estimate with a BART Chipman et al. [2010] estimate, and
found that with 100 epochs the estimates were similar. Otherwise, all parameters stayed the same.
Additionally, for this analysis we do not do a train/test split.

Method CATE Estimate Mean Prognostic

Shared Network 1.13 NA
Separate Networks 0.26 5.90

Separate Networks Bart Propensity 0.099 6.07
Naive NN Approach -0.03 NA

BCF (R-implementation) 0.07 6.20

Table 3

6 Discussion

What is preferrable about this proposed methodology to the state of the art tree methods, such as
Wager and Athey [2018], Hahn et al. [2020], or Krantsevich et al. [2021]? We do not aim to answer
that question, but rather instead provide some evidence that if a researcher is intent on using some
deep learning architecture for their causal needs, then the methods developed in this document are
the way to go. For one, we show in a plausible simulation study the benefits of our methodology.
From a sheer performance point of view, our method provides an advantage over other competitive
deep learning causal tools. Additionally, the parameterization of Hahn et al. [2020] provides mul-
tiple advantages. Because we split the prognosis and treatment networks, we can regularize the
networks differently, we could use different hyperparameters for each, we can include different con-
trols for each. This flexibility could likely be of importance to practitioners with expert knowledge.
Additionally, because the approach is built off neural networks, it lends itself to other applications,
such as incorporating image data into the control set (or even as a treatment). Building the network
off pytorch also allows for easier scalability, adjustment, and online support.

14



Deep Causal Learning BCF-NNet

Acknowledgements

We thank ASU Research Computing facilities for providing computing resources.

References

Hugh A Chipman, Edward I George, Robert E McCulloch, et al. Bart: Bayesian additive regression
trees. The Annals of Applied Statistics, 4(1):266–298, 2010. 6, 8, 14

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989. 2

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep learning for individual heterogeneity. arXiv
preprint arXiv:2010.14694, 2020. 1, 2, 5, 6, 7, 8, 10

P Richard Hahn, Jared S Murray, and Carlos M Carvalho. Bayesian regression tree models for causal
inference: Regularization, confounding, and heterogeneous effects (with discussion). Bayesian
Analysis, 15(3):965–1056, 2020. 1, 2, 5, 6, 7, 8, 10, 14

Miguel A Hernán and James M Robins. Causal Inference: What If. Boca Raton: Chapman & Hall,
CRC, 2020. 3, 4

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011. 1, 5

Nikolay Krantsevich, Jingyu He, and P Richard Hahn. Stochastic tree ensembles for estimating
heterogeneous effects. Arxiv Preprint, 2021. URL https://arxiv.org/abs/2209.06998. 1, 14

Serge V Onyper, Pamela V Thacher, Jack W Gilbert, and Samuel G Gradess. Class start times, sleep,
and academic performance in college: a path analysis. Chronobiology International, 29(3):318–335,
2012. 13

U. Shalit, F.D. Johansson, and D. Sontag. Estimating individual treatment effect: Generalization
bounds and algorithms. International Conference on Machine Learning, 2017. 1

Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment
effects. Advances in neural information processing systems, 32, 2019. 1

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018. 1, 5,
14

C. Woody, S. Carvalho, P.R. Hahn, and J. Murray. Estimating heterogeneous effects of continuous
exposures using bayesian tree ensembles: revisiting the impact of abortion rates on crime. Arxiv
Preprint, 2020. 14

15

https://arxiv.org/abs/2209.06998

	Introduction
	Problem Description
	Conditional Average Treatment Effect (CATE)
	Estimating CATE using Deep Learning

	Methods
	Joint Training Architecture (Farrell/Shared Network)
	BCF nnet
	Separate Network Regression Approach
	Linear Model

	Simulation Summary
	Data Example
	Discussion

